Abstract
We have measured the forces F as a function of surface separation D acting between two smooth curve mica sheets, immersed in aqueous electrolyte medium (potassium nitrate), both in the absence and in the presence of polyelectrolyte (poly-L-lysine, M= 90 000) adsorbed onto the surfaces from solution. Forces between the bare surfaces are typical of double-layer electrostatic interactions and in reasonable accord with DLVO theory. Following adsorption of the polyelectrolyte we find a monotonically increasing, long-range repulsion on a first approach (or compression) of the surfaces, commencing at D≈ 120 nm. On decompression, as well as on subsequent compression/decompression cycles, we find the long-range repulsion has irreversibly disappeared, to be replaced by a reversible much shorter-range repulsion (D≲ 20 and 70 nm, for 10–1 and 10–3 mol dm–3 KNO3 electrolyte, respectively). An analysis of the F against D profiles suggests that a combination of DLVO-type electrostatic repulsion and steric factors is primarily responsible for the observed interactions. The adsorbance of poly-L-lysine onto the mica surfaces has also been determined, via refractive-index measurements, and is 2 ± 0.5 mg m–2 of mica surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.