Abstract

Rigging is one of the most dangerous aspects of arboriculture, yet there are no robust studies of the forces and stresses generated during rigging. Compounding the inherent danger of rigging is the structurally-deficient condition of many trees that are removed using rigging. Red pines (Pinus resinosa Ait.) (n = 13) were removed using conventional techniques, and forces at the block and in the rope were measured as the top, and four subsequent pieces were rigged with a block and Port-A-Wrap. Stress in the trunk at breast height was calculated from strain measurements and each tree’s modulus of elasticity. Multiple regression was used to determine which independent variables (mass of piece, fall distance and fall ratio, notch angle and depth) best predicted forces. Tops and pieces exhibited different relationships with mass, which was the best predictor of force at the block and tension in the rope. Other variables were not as important and exhibited counter-intuitive relationships with forces. There were few differences in stress generated when removing tops and pieces, which appeared to be due to greater deflection higher in the trunk when tops were removed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.