Abstract

Nonlinear coupling dynamics between a spring-mass system and a finite amplitude sloshing system with liquid in a cylindrical tank is investigated. Based on a group of nonlinear coupling equations of six degrees of freedoms, analytical formulae of forces and moments of the liquid large amplitude sloshing were obtained. Nonlinearity of the forces and moments of the sloshing was induced by integrating on final configuration of liquid sloshing and the nonlinear terms in the liquid pressure formula. The symmetry between the formula of Ox and Oy direction proves that the derivation is correct. According to the coupled mechanism, the formulae are available in other liquid-solid coupled systems. Simulations and corresponding experimental results are compared. It is shown that the forces and moments formulae by integrating on the final sloshing configuration are more reasonable. The omitted high-dimensional modal bases and high-order nonlinear terms and the complexity of sloshing damping are main sources of errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.