Abstract

This article deals with the interaction between humans and industrial robots, more specifically with the new design and implementation of an algorithm for force-guided motions of a 6-d.o.f. robot. It may be used to comfortably teach positions without using any teaching pendant or for some assistance tasks. For this purpose, from readings of the force/torque sensor mounted in the robot wrist, the gravity forces and torques first have to be eliminated. To control the robot in joint space, it is then convenient to transform the external force and torque values from Cartesian space into joint space using the manipulator transposed Jacobian. This is why with the present approach the Jacobian matrix of the robot used was calculated. Now, from the computed joint torques, suitable position commands of the robot arm can be generated to obtain the desired behavior. A suggestion for this desired behavior is also included in this article. It is based on the impedance control approach in joint space. The proposed algorithm was implemented with the standard Stäubli RX90B industrial robot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.