Abstract

Abstract Harmonic forced vibration of thick viscoelastic hollow cylinders of infinite extent is considered. The cylinder is excited by stresses applied at the inner and outer boundaries. The governing equation of motion is developed by utilizing three dimensional theory of elastodynamics. The material damping is allowed using complex elastic moduli for the viscoelastic medium. Modal displacements and stresses at any point in the medium are formulated in terms of boundary stresses. Frequency responses for radial, tangential and axial displacements are computed for different circumferential and axial wave numbers. The effect of different material loss factors on the frequency responses is examined for axial and nonaxisymmetric modes. The dimensionless resonant frequencies for zero loss factor are compared with dimensionless natural frequencies available for elastic material. Comparison indicates excellent agreement between the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.