Abstract

This paper models the harmonically forced vibration of a bi-axially pre-stressed plate resting on a rigid foundation using the three-dimensional linearized theory of elastic waves in initially stressed bodies. This model assumes that the material is linearly elastic, homogenous, and isotropic. The model of this system is numerically evaluated using the finite element method simulations. The numerical results illustrate the influence of several system parameters on the dynamic responses of the stresses acting at the interface between the plate and its rigid foundation. The simulations show that the aspect ratio of the plate determines how the initial stress influences the behavior of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.