Abstract
AbstractThe linear fluid dynamics is considered when infinite vertical boundaries are set in oscillatory vertical motion. The case of exponential stratification with constant kinematic viscosity is explicitly studied. When the forcing frequency equals the Brunt–Vaisälä frequency for the fluid, the customary boundary layers are absent in the steady-state oscillation, however small be the kinematic viscosity; for a semi-infinite fluid the corresponding horizontal extent of the region influenced by the boundary motion is then of the order of the stratification length. The sign of the phase angle is everywhere dependent on whether the magnitude of the forcing frequency is greater than or less than that of the Brunt–Vaisäla frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.