Abstract

Two-dimensional (2D) turbulence in the energy range exhibits nonuniversal features, manifested in the departure (at low k) from the k(-5/3) energy spectrum law, variable energy flux, and irregular, nonlocal transfers. To unravel the underlying mechanism we conducted a detailed study of the 2D turbulence in spectral and physical space. It revealed complex multiscale organization of vorticity field and dynamic processes, ranging from large-scale meandering jets to strong localized vortices. The latter bear prime responsibility for the nonuniversal behavior of 2D turbulence, and we examined their statistical features and the growth mechanism. Our results are based on the numeric simulation of 2D turbulence on the 512 grid under different forcing-dissipation conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.