Abstract

<p>Subduction initiation (SI) induced by the tectonic boundary force may play a significant role in the Wilson cycle. In the previous analog and numerical models, the constant convergent velocity is generally applied, which may lead to large boundary forces for SI. In this study, we begin with testing the simple case of SI at passive margin with constant convergent force. The results indicate that the boundary force required to trigger the SI at passive margin with a thin and young oceanic lithosphere is much lower than that with a thick and old one. It is consistent with the multiple Cenozoic subduction zones in the Southwest Pacific, which are young ocean basin within 40 Ma and compressed by the India-Australia plate. Furthermore, we extended our model to explore a more complex case, forced SI during the collision-induced subduction transference, which is critical for Tethyan evolution. Both collision and SI processes are integrated in the numerical models. The results indicate that the forced convergence, rather than pure free subduction, is required to trigger and sustain the SI in the neighboring passive margin after collision of terrane. In addition, a weak passive margin can significantly promote the occurrence of subduction initiation, by decreasing required boundary force within reasonable range of plate tectonics. However, the lengths of subducted oceanic slab and accreting terrane play secondary roles in the occurrence of SI after collision. Under the favorable conditions of collision-induced subduction transference, the time required for subduction initiation after collision is generally within 10 Myrs, which is consistent with the general geological records of Neo-Tethys. In contrast, both Atlantic passive margin and Indian passive margin are old and stable with absence of subduction initiation in the present, which remains an open question.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call