Abstract

Abstract The dynamic response of turbine engine components varies widely due to manufacturing deviations in the blades known as mistuning. This dynamic variation is investigated using a single stage compressor experimentally using both blade tip timing (BTT) and strain gage (SG) measurements and using as-manufactured finite element models (AMMs) on a 1st bend mode. Operational BTT and SG safety limits were generated using both averaged and AMM models via Goodman material properties. The predicted individual blade stress/deflection (S/D) ratios and strain gage ratios for this mode will be compared to the average finite element counterparts. Additionally, the correlation between BTT and SG's will be presented. This correlation will be performed using two approaches: blade maximum stress comparisons and measured response compared to the sensors safety limits. It will be shown that accounting for geometry with AMMs produce more accurate strain gage to BTT correlation compared to average models. An experimental model updating procedure is developed to increase the strain gage to BTT correlation by optimizing the location the BTT optical spot probes measure on the blade chord. Implementing this procedure using as-manufactured models are able to improve strain gage to BTT correlation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.