Abstract
A spherically symmetric problem of oscillations of a single gas bubble at the center of a spherical flask filled with a compressible liquid under the action of pressure oscillations on the flask wall is considered. A system of differential-difference equations is obtained that extends the Rayleigh-Plesset equation to the case of a compressible liquid and takes into account the pressure-wave reflection from the bubble and the flask wall. A linear analysis of solutions of this system of equations is performed for the case of harmonic oscillations of the bubble. Nonlinear resonance oscillations and nearly resonance nonharmonic oscillations of the bubble caused by harmonic pressure oscillations on the flask wall are analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Applied Mechanics and Technical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.