Abstract

The forced reconnection of magnetic field lines within the framework of electron magnetohydrodynamics (EMHD) has been investigated. A broad class of solutions that describe stationary reconnection have been found. The time evolution of the plasma and of the magnetic field when perturbations are imposed from the boundary of a high conductivity plasma slab are also studied. The initial magnetic field has a null surface. Following this discussion, the so-called Taylor’s problem for EMHD in which the perturbations cause a change in the topology of the magnetic field has been solved. The plasma and the magnetic field are seen to evolve with the time scale of the linear tearing mode. Their time evolution is described by exponential dependences. Analytic and numerical simulation results of the nonlinear regime of forced magnetic reconnection in EMHD are also presented. Finally, the above results are compared with a case where the reconnection is mediated by dissipative electron viscosity effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.