Abstract

In this work, by utilizing the nonlinear equations of motion of an incompressible, isotropic thin elastic tube subjected to a variable initial stretches both in the axial and the radial directions and the approximate equations of motion of an incompressible inviscid fluid, which is assumed to be a model for blood, we have studied the propagation of nonlinear waves in such a medium under the assumption of long wave approximation. Employing the reductive perturbation method we obtained the variable coefficient forced KdV equation as the evolution equation. By use of proper transformations for the dependent field and independent coordinate variables, we have shown that this evolution equation reduces to the conventional KdV equation, which admits the progressive wave solution. The numerical results reveal that the wave speed is variable in the axial coordinate and it decreases for increasing circumferential stretch (or radius). Such a result seems to be plausible from physical considerations. We further observed that, the wave amplitude gets smaller and smaller with increasing time parameter along the tube axis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.