Abstract

Ethylene, a gaseous plant hormone, is responsible for the initiation of reproductive development in pineapple. Reproductive development can be forced in pineapple (Ananas comosus var. comosus) throughout the year with ethylene. Inhibition of natural flowering initiation with aviglycine [(S)-trans-2-amino-4-(2-aminoethoxy)-3-butenoic acid hydrochloride], an inhibitor of ethylene biosynthesis, provides evidence that reproductive development in response to cold stress and short daylength is also in response to ethylene production. We studied the effect of cold treatment of pineapple on ethylene production and flower induction by applying a short-term cold stress to stem apices. Shoot apices of pineapple treated with ice crystals also produced twice as much ethylene as did those of control plants and significantly more than was produced by “D” leaf basal tissue. Moreover, pineapple plants treated four times with ice crystals or ice water were induced to flower under field conditions and the forcing efficiency, as evaluated by the percentages of inflorescence emergence and fruit harvest, was comparable to forcing with calcium carbide (CaC2) and ethephon. In another field experiment two applications of a 1.0% solution of CaC2 or 0.15% ethephon applied at 48 h intervals was sufficient to force reproductive development of ‘Tainon 17’. Furthermore, 0.5 or 1.0% solutions of CaC2 supplemented with 0.5% activated charcoal (AC) significantly improved the forcing effectiveness of CaC2. This could/would make it possible to reduce the number or concentration, or both, of CaC2 required to effect forcing in pineapple.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.