Abstract

The ability of mesenchymal stem cells (MSCs) to preserve cancer cells potentially constitutes the adverse effect of MSC-based cell therapy in the context of hematologic malignancy. In an effort to reverse this undesirable feature of MSCs, we manipulated human umbilical cord-derived MSCs (UC-MSCs) to express indoleamine-2,3-dioxygenase (IDO), an enzyme that induces immune suppression by inhibiting T cell proliferation and triggering apoptosis in immune cells. Cultures of human UC-MSCs were generated by plastic adherence method. Full-length cDNA of human IDO was cloned into adenovirus shuttle vector. Then, the recombinant virus harboring IDO gene was produced in 293 cells and used to infect UC-MSCs. Expression of IDO protein was detected within infected UC-MSCs, and accumulation of kynurenine was observed in the supernatant. Two human leukemia cell lines, Jurkat and HL-60, were cultured on the monolayer of native or infected UC-MSCs, respectively. It was observed that forced IDO expression abolished the anti-apoptotic effect of UC-MSCs on these leukemia cells and enhanced their proliferation inhibitory effect on activated human lymphocytes as well as leukemia cells. These results suggested that equipping MSCs with IDO could be one of the reasonable strategies to reverse their cancer-supportive effect unfavorable for clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.