Abstract

We investigate the strength of adhesion and the dynamics of detachment of elastic beads (Young's modulus E approximately 1 MPa) adhering to a horizontal solid surface in a viscous liquid. The beads are initially compressed on the surface. Their unbinding is imposed by fast vertical stretching (above a certain threshold value). The decrease in the contact radius is monitored by interferential microscopy. We find that the dynamics of detachment involves three steps: (i) fast elastic decompression, (ii) slow adhesive detachment, and (iii) catastrophic rupture. They can be interpreted by a transfer of the Johnson Kendall Roberts (JKR) energy toward viscous losses in the liquid wedge, near the rubber/solid/liquid (R/S/L) contact line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.