Abstract

Measurements were made to investigate the localized heat transfer behavior of submerged slot jets. The experiments were performed with kerosene jets impinging on a vertical constant-heat-flux surface from a meso-scale slot nozzle 125 μm in width with Re = 600–1200 and nozzle-to-plate spacing Z/ B = 2–20. Heat transfer coefficients at the stagnation line were measured and correlated as a function of jet Reynolds numbers and Prandtl numbers. Lateral distributions of local heat transfer coefficients were also determined and correlated. Non-monotonic variations and unusual behavior of local heat transfers were observed and attributed to the possible transition from a laminar to a turbulent flow. This transition takes place within an extremely short distance of 400–500 μm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call