Abstract

A numerical study on the forced convection of water-Cu power-law non-Newtonian nanofluid in a wavy channel has been done. The temperature of the horizontal walls is larger than that of the input fluid. The governing equations are solved by the SIMPLE algorithm-based finite volume method. The effects of pertinent parameters power-law index, Reynolds number, and nanoparticle volume fraction have been varied. The obtained results are presented in terms of the local and average Nusselt number (Nu) for the rate of heat transfer, streamlines, and isotherms. The correlation for the average Nusselt number is obtained using the Response Surface Analysis (RSM) for the flow parameters. The relationship between input parameters and output was observed by plotting the response surface and contours that were obtained by RSM. The sensitivity of the output response to all the input parameters is also observed. This study concludes that heat transfer enhanced in wavy channels by adding nanoparticles and increasing the Reynolds number. It is also observed that shear-thinning non-Newtonian nanofluids can be more effective in heat transfer enhancement than shear-thickening fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.