Abstract

Forced convective heat transfer in pipes is investigated for viscoelastic fluids obeying the Giesekus constitutive equation including effect of slip condition by an approximated analytical method. The slip equation at wall is considered as a nonlinear Navier model with non-zero slip critical shear stress. The problem under consideration is steady, laminar and fully developed. Thermal boundary conditions are assumed peripherally and axially constant heat flux at wall. The fluid heating and cooling cases are considered for analysis. Dimensionless temperature profiles and Nusselt number are obtained by solving governing equations and the effects of slip parameters, viscous dissipation and fluid elasticity are discussed. Results show that Nusselt number increases by increasing slip effect but decreases by increasing Brinkman number for the case of fluid heating. However, for the cooling case, the heat generated by viscous dissipation can overcome the effect of wall cooling at first critical Brinkman number and fluid starts to warm up. Also the Nusselt curve shows a singularity in a second critical Brinkman number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.