Abstract

The paper deals with the problem of two-dimensional laminar forced convection heat transfer from a straight isothermal tube of elliptic cross-section placed in a uniform stream. The study is based on numerical solutions of the conservation equations of mass, momentum, and energy which covers the entire flow domain including the wake region. The parameters influencing the heat transfer process are essentially the Reynolds number, Re, the tube geometry represented by its minor to major axis ratio, Ar, and the angle of inclination, λ. The study focuses on the effect of Re, Ar, and λ on the heat transfer process in the range of Re from 20 to 500. The study reveals that the rate of heat transfer reaches its maximum when λ=0∘ while the minimum occurs when λ=90∘. The results also show that smaller axis ratio gives higher heat transfer rate when λ=0∘. The local Nusselt number and surface vorticity distributions are plotted for a number of cases and the effect of vortex shedding on the overall rate of heat transfer is briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.