Abstract

Boiling of a pure fluid inside the rotor–stator cavities of a stator–rotor–stator spinning disc reactor (srs‐SDR) is studied, as a function of rotational velocity ω, average temperature driving force and mass flow rate . The average boiling heat transfer coefficient hb increases a factor 3 by increasing ω up to 105 rad s−1, independently of and . The performance of the srs‐SDR, in terms of hb vs. specific energy input ϵ, is similar to tubular boiling, where pressure drop provides the energy input. The srs‐SDR enables operation at Wm , yielding values of hb not practically obtainable in passive evaporators, due to prohibitively high pressure drops required. Since hb is increased independently of the superficial vapor velocity, hb is not a function of and the local vapor fraction. Therefore, the srs‐SDR enables a higher degree of control and flexibility of the boiling process, compared to passive flow boiling. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3763–3773, 2016

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.