Abstract
Hadronic transport approaches based on an effective solution of the relativistic Boltzmann equation are widely applied for the dynamical description of heavy ion reactions at low beam energies. At high densities, the assumption of binary interactions often used in hadronic transport approaches may not be applicable anymore. Therefore, we effectively simulate the high-density regime using the local forced canonical thermalization. This framework provides the opportunity to interpolate in a dynamical way between two different limits of kinetic theory: the dilute gas approximation and the ideal fluid case. This approach will be important for studies of the dynamical evolution of heavy ion collisions at low and intermediate energies as experimentally investigated at the beam energy scan program at RHIC, and in the future at FAIR and NICA. On the other hand, this new way of modeling hot and dense strongly interacting matter might be relevant for small systems at high energies (LHC and RHIC) as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics G: Nuclear and Particle Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.