Abstract

The coupled problem of the forced axisymmetric vibrations and self-heating of electrothermoviscoelastic cylindrical shells with piezoceramic actuators under monoharmonic electromechanical loading is solved. The temperature dependence of the complex characteristics of the passive and piezoactive materials is taken into account. The coupled nonlinear problem of electrothermoelasticity is solved by using a time-marching method with discrete orthogonalization at each time step (to integrate the equations of elasticity) and an explicit finite-difference method (to solve the heat-conduction equations). An analysis is made of the effect of the boundary conditions at the shell ends, the dimensions of the piezoactuator, and the self-heating temperature on the actuator voltage and the effectiveness of active damping of the forced vibrations of the shell under uniform transverse monoharmonic pressure

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call