Abstract
The ability to produce muscle power during sprint acceleration is a major determinant of physical performance. The comparison of the force-velocity (F-v: theoretical maximal force, F0; velocity, v0 and maximal power output, Pmax) profile between men and women has attracted little attention. Most studies of sex differences have failed to apply a scaling ratio when reporting data. The present study investigated the sex effect on the F-v profile using an allometric model applied with body mass (BM), fat-free mass (FFM), fat-free mass of the lower limb (FFMLL), cross-sectional area (CSA) and leg length (LL) to mechanical parameters. Thirty students (15 men, 15 women) participated. Raw velocity-time data for three maximal 35m sprints were measured with a radar. Mechanical parameters of the F-v relationship were calculated from the modelling of the velocity-time curve. When F0 and Pmax were allometrically scaled with BM (p = 0.538; ES = 0.23) and FFM (p = 0.176; ES = 0.51), there were no significant differences between men and women. However, when the allometric model was applied to Pmax with FFMLL (p = 0.015; ES = 0.52), F0 with CSA (p = 0.016; ES = 0.93) and v0 with LL (p ≤ 0.001; ES = 1.98) differences between men and women persisted. FFM explained 83% of the sex differences in the F-v profile (p ≤ 0.001). After applying an allometric model, sex differences in the F-v profile are explained by other factors than body dimensions (i.e., physiological qualitative differences).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.