Abstract

A study of the effect of including a redundant actuated branch on the existence of force-unconstrained configurations for a planar parallel layout of joints is presented1. Two methodologies for finding the force-unconstrained poses are described and discussed. The first method involves the differentiation of the nonlinear kinematic constraints of the input and output variables with respect to time. The second method makes use of the reciprocal screws associated with the actuated joints. The force-unconstrained poses of non-redundantly actuated planar parallel manipulators can be mathematically expressed by means of a polynomial in terms of the three variables that define the dimensional space of the planar manipulator, i.e., the location and orientation of the end-effector. The inclusion of redundant actuated branches leads to a system of polynomials, i.e., one additional polynomial for each redundant branch added. Elimination methods are employed to reduce the number of variables by one for every additional polynomial. This leads to a higher order polynomial with fewer variables. The roots of the resulting polynomial describe the force-unconstrained poses of the manipulator. For planar manipulators it is shown that one order of infinity of force-unconstrained configurations is eliminated for every actuated branch, beyond three, added. As an example, the four-branch revolute-prismatic-revolute mechanism (4-RPR), where the prismatic joints are actuated, is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call