Abstract

Concrete-filled steel tube (CFST) columns with internal ring-plate-reinforced connections are increasingly used in high-rise buildings. However, the behavior and optimal design of such large-scale connections is not well established. This study presents a numerical investigation of the structural performance of a ring-plate-reinforced CFST column to steel beam connection. The paper begins by reviewing a previous experimental study. Subsequently, nonlinear finite element models were developed and validated using the test results. Parametric analyses were conducted to evaluate the effects of the ring plate dimensions, friction coefficient, and concrete defects on the load transfer mechanism. The results showed that the ring plate and friction force together effectively transferred the beam load to the concrete core. An optimal ring plate width of 75 mm was identified. Concrete defects significantly reduced the load carrying capacity of the ring plate. The stress distribution in the concrete cross section transitioned from nonuniform to uniform over a length approximately equal to the column diameter. The connection design was found adequate for the prototype structure analyzed. The study provides valuable guidance for improving ring-plate-reinforced connection design in future construction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.