Abstract
PurposeThe purpose of this paper is to apply a intelligent algorithm to conduct the force tracking control for electrohydraulic servo system (EHSS). Specifically, the adaptive neuro-fuzzy inference system (ANFIS) is selected to improve the control performance for EHSS.Design/methodology/approachTwo types of input–output data were chosen to train the ANFIS models. The inputs are the desired and actual forces, and the output is the current. The first type is to set a sinusoidal signal for the current to produce the actual driving force, and the desired force is chosen as same as the actual force. The other type is to give a sinusoidal signal for the desired force. Under the action of the PI controller, the actual force tracks the desired force, and the current is the output of the PI controller.FindingsThe models built based on the two types of data are separately named as the ANFIS I controller and the ANFIS II controller. The results reveal that the ANFIS I controller possesses the best performance in terms of overshoot, rise time and mean absolute error and show adaptivity to different tracking conditions, including sinusoidal signal tracking and sudden change signal tracking.Originality/valueThis paper is the first time to apply the ANFIS to optimize the force tracking control for EHSS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Intelligent Computing and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.