Abstract
Neuronal activity was recorded in the ventral premotor cortex of one monkey (Macaca fascicularis) trained to exert finely graded forces with thumb and index finger on a force sensor in a visuomotor step-tracking paradigm. Trials with two or three consecutive ramp-and-hold force steps were presented randomly. Most neurons displayed similar discharge patterns in the two- and three-step trials and were assigned to one of the following classes: phasic, phasic-tonic, tonic, decreasing, and mixed. For more than 50% of the neurons with tonic activity, positive or negative correlations between firing rate and force were statistically significant. The indices of force sensitivity were on average higher for the two-step than for the three-step trials, indicating that the correlations yielded linearity over only a limited force range. The force-related cells were located in two regions of the ventral premotor cortex. One group was ying rostrally within the inferior limb of the arcuate sulcus, from which microstimulation elicited movements of fingers and hand. In the other more caudal region, adjacent to the finger region of primary motor cortex, microstimulation was rarely effective, but all neurons had clear peripheral receptive fields on finger and hand. The data indicate that two populations of neurons, located in the ventral premotor cortex, are related to movement execution. Effective microstimulation also suggests that one of the populations has fairly direct access to the spinal motor apparatus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.