Abstract

Producing load-adapted and functionally integrated components by flexible and resource efficient processes has gained importance within industries like the automotive sector in recent years. A promising new class of processes that enables a local adaption of the sheet thickness is Sheet-Bulk Metal Forming (SBMF). While the incremental procedure (iSBMF) only requires a moderate forming force, forming of high strength steels leads to a tool load resulting in a significantly reduced tool life. One approach to reduce tool loads is the utilization of the so called electroplastic effect (EPE). This study for the first time identifies the potential of the EPE on a temporary reduction of the forming force during the iSBMF of gears targeting an improvement of the tool life. The steel grades DC04 and HSM700 HD are characterized considering the EPE under uniaxial tension. Based on the characterization, the current density and temperature increase are modelled numerically and analytically for the incremental gear forming process. Moreover, the impact of EPE on strain hardening, grain texture and forming force is determined. By a local insulation of the forming tool based on a PVD coating and the application of an electrical current, a temporary force reduction of up to 55 % is observed whereas the strain hardening effect remains almost unaffected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call