Abstract

A lateral jump assessment may provide unique benefits in sports such as basketball that require multidirectional performance optimization. This study aimed to examine selected force-plate derived metrics as predictors of lateral jump task distance in men's basketball players. Twenty-two NCAA Division-I men's basketball players (19.4 ± 1.3 years, 95.0 ± 12.5 kg, 196.5 ± 8.1 cm) each performed six single leg lateral jumps while standing on a force plate (1200 Hz, Kistler Instrument Corp). The lateral jump task involved the subject beginning by standing on the force plate and jumping sideways off one foot and then landing on the floor with the opposite foot. Three-dimensional ground reaction force curves were used to identify the eccentric and concentric phases of the jump and variables were computed each from the lateral (y), vertical (z), and resultant (r) force traces. Peak ground reaction force (pGRF), ground reaction force angle (θr), eccentric braking rate of force development (ECC-RFD), average concentric force (CON-AVG), total jump duration, eccentric phase duration, and eccentric to total time ratio were evaluated for predictive ability. Three regression models were able to significantly (p<0.05) predict jump distance: (1) pGRFy, pGRFz, and θr (p<0.001, R2 = 0.273), (2) Relative pGRFy, Relative pGRFz, and θr ((p<0.001, R2 = 0.214), and (3) Relative CON-AVGy and Relative pGRFr (p<0.001, R2 = 0.552). While several force plate-derived metrics were identified as significant predictors, a model with Relative CON-AVGy and Relative pGRFr explained a greater variability in performance (R2 = 0.55) compared to the other variables which were low, yet also significant. These results suggest that lateral ground reaction forces can be used to evaluate lateral jump performance with the use of three-dimensional force plates. The identified predictors can be used as a starting point for performance monitoring, as basketball training interventions can be directed at specific improvements in the identified metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.