Abstract
Two linear electrostatic motors were designed in order to optimize the force characteristics of an artificial muscle actuated underwater probe system. Finite element method (FEM) analyses are used to analyze and optimize the motor’s designed parameters. The two structures are designed to be linear-actuated and are compared under similar conditions. The objective of this research is to design, compare and analyze the effect of varying the motor’s parameters to the actuation force (Fx). First, the two structures are designed using ANSYS Maxwell 3D; i.e (a) Non-Skew-Type Electrostatic Motor and (b) Skew-Type Electrostatic Motor. Next, the thrust forces were evaluated using Finite Element Method (FEM) analyses in order to optimize the motor’s parameters. The FEM analyses are carried out by (i) varying the ratio number of electrode-to-spacer (ii) varying the motor’s gap and (iii) varying the motor’s size. The FEM analysis shows that the Skew-Type Electrostatic Motor exhibit greater actuation force, 2.7857mN compared to the Non-Skew-Type Electrostatic Motor, 1.7476mN; when the ratio number of electrode-to-spacer is 1.0:2.5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.