Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic disease transmitted from dromedary camels to people, which can result in outbreaks with human-to-human transmission. Because it is a subclinical infection in camels, epidemiological measures other than prevalence are challenging to assess. This study estimated the force of infection (FOI) of MERS-CoV in camel populations from age-stratified serological data. A cross-sectional study of MERS-CoV was conducted in Kenya from July 2016 to July 2017. Seroprevalence was stratified into four age groups: <1, 1-2, 2-3 and >3 years old. Age-independent and age-dependent linear and quadratic generalised linear models were used to estimate FOI in pastoral and ranching camel herds. Models were compared based on computed AIC values. Among pastoral herds, the age-dependent quadratic FOI was the best fit model, while the age-independent FOI was the best fit for the ranching herd data. FOI provides an indirect estimate of infection risk, which is especially valuable where direct estimates of incidence and other measures of infection are challenging to obtain. The FOIs estimated in this study provide important insight about MERS-CoV dynamics in the reservoir species, and contribute to our understanding of the zoonotic risks of this important public health threat.

Highlights

  • Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging zoonotic infection that spills over from the dromedary camel reservoir to humans

  • Little is known about MERS-CoV dynamics within the dromedary camel reservoir, and what impact these dynamics might have on the risk of zoonotic transmission

  • Age and sex were distributed among the two production systems. For these reasons and due to a large difference in seroprevalence, production system appeared to be an important characteristic in camel raising and MERS-CoV transmission, and was the basis for exploring force of infection (FOI) separately in ranching and pastoral herds

Read more

Summary

Introduction

Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging zoonotic infection that spills over from the dromedary camel reservoir to humans. It was first reported in 2012, and causes severe respiratory disease in humans with a case fatality rate of approximately 35% [1]. The virus is endemic in dromedary camels across the Middle East, Africa and parts of South Asia [2]. Zoonotic transmission from camels to humans has been reported only in the Middle East [3]. Little is known about MERS-CoV dynamics within the dromedary camel reservoir, and what impact these dynamics might have on the risk of zoonotic transmission

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.