Abstract

Poor mechanical and chemical bondings at the interface between a framework and denture base resin have been responsible for many removable partial denture failures. This study tested the force necessary to separate acrylic resin bases from test frameworks using different acrylic retention designs (smooth metal plate, metal plate with bead retention, lattice retention, and mesh retention). The force needed to separate acrylic resin from primed test frameworks was also measured. Eighty chromium-cobalt test frameworks were fabricated using preformed wax patterns and cast according to manufacturer's instructions. Half the specimens were primed prior to acrylic processing. The same base acrylic was used for all specimens. Separation forces that fractured acrylic resin from test frameworks were generated by a universal testing machine at a crosshead speed of 25 mm/min. Loads at failure and types of failure were recorded. Data were analyzed using ANOVA. The mean separation force of acrylic resin from unprimed retention designs was highest for the metal plate with beads (3.1 kN), followed by mesh (2.8 kN) and lattice (2.1 kN), and lowest (0.1 kN) for the smooth metal plate. The mean separation force for primed acrylic retention designs was highest for the metal plate with beads (4.2 kN), followed by mesh (3.4 kN) and smooth metal plate (3.0 kN), and lowest for lattice retention (2.6 kN). Bond failure occurred both adhesively at the interface between metal and acrylic resin and cohesively within the acrylic resin. Cohesive bond failure increased when specimens were primed. The rate of cohesive bond failure remained the same for primed mesh retention specimens. Significantly increased force was necessary to separate the acrylic from each design of primed test specimens compared with unprimed specimens of the same design. The primed metal plate with beads exhibited significantly greater separation force than the other three designs. Primed mesh had significantly greater separation force values than primed lattice and smooth metal plate. Primed lattice was significantly less retentive than the other three primed designs. Except for the retentive mesh specimens, there was higher occurrence of cohesive failures in the acrylic resin when the frameworks were primed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.