Abstract

We present the results of our experimental measurements of how variations in the discharge geometry of surface-mounted dielectric barrier discharges (DBDs) affect the force transferred to atmospheric pressure air. Our studies include both single barrier plasma actuators (one electrode insulated) and double barrier plasma actuators (both electrodes insulated) operated in quiescent air. Stagnation probe measurements of the induced air flow and direct force measurements using an electronic balance show that, for both actuator types, parallel time-averaged forces increase as the high voltage electrode diameter decreases. For single barrier actuators, this increase is exponential rather than linear as previously reported in the literature. The data from the two measurement techniques are directly proportional to one another. When the variation of velocity and pressure on all sides of an actuator are considered, the techniques show quantitative agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call