Abstract
Long-range interactions between self-assembled monolayers (SAMs) of semifluorinated alkanethiols have been studied by direct force measurements in water and aqueous NaCl solutions. SAMs prepared from three different thiols, with identical fluorinated head groups but varying hydrocarbon spacer lengths, were investigated: CF3(CF2)9(CH2)xSH, where x=2, 11, or 17. Force measurements show that the interactions in water and electrolyte solutions are composed of both double-layer interactions emerging from what appears to be charges adsorbed onto the surfaces and long-range “hydrophobic” attractions, in excess of the expected van der Waals forces. The three investigated thiols produce similar results in force measurements, though the contact angles with water are slightly different. The “hydrophobic” attraction has the form of step-like attractive discontinuities in the force profiles at separations ranging from 20 to 40 nm, caused by bridging of microscopic bubbles residing at the surfaces. The shape or range of these discontinuities are not significantly affected by replacement of the water with either 1 mM or 1 M NaCl solutions. The origin of the charges causing the electrostatic double-layer interaction is unclear, but some possible causes are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.