Abstract

A NACA 0012 wing tip was tested at Mach 0.75 and chord Reynolds number of 3 million at incidences from to 7 deg in a transonic Ludwieg tube. The Mach and Reynolds numbers are representative of full-scale rotorcraft blades. Because of the short test time of 0.1 s and high impulse loads, a dynamic calibration was applied to a conventional sidewall force balance to compensate for stress waves propagating within the force balance and test article. Numerical simulations of the entire test section were accomplished to provide data for comparison. The compensated, experimental lift and drag data compared well with the numerical results. This suggests that dynamic calibration improved the experimental data. This comparison demonstrates the feasibility of using complex models for calibrating short-duration wind tunnels in concert with numerical simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.