Abstract

BackgroundElbow arthroscopy is a difficult surgical technique. Objective metrics can be used to improve safe and effective training in elbow arthroscopy. Force exerted on the elbow tissue during arthroscopy can be a measure of safe tissue manipulation. The purpose of this study was to determine the force magnitude and force direction used by experts during arthroscopic elbow navigation in cadaveric specimens and assess their applicability in elbow arthroscopy training.MethodsTwo cadaveric elbows were mounted on a Force Measurement Table (FMT) that allowed 3-dimensional measurements (x-, y-, and z-plane) of the forces exerted on the elbow. Five experts in elbow arthroscopy performed arthroscopic navigation once in each of two cadaveric elbows, navigating through the posterior, posterolateral and anterior compartment in a standardized fashion with visualization of three to four anatomic landmarks per compartment. The total absolute force (Fabs) and force direction exerted (α and β) on the elbow during arthroscopy were recorded. α being the angle in the horizontal plane and β being the angle in the vertical plane. The 10th–90th percentiles of the data were used to set threshold levels for training.ResultsThe median Fabs was 24 N (19 N – 30 N), 27 N (20 N – 33 N) and 29 N (23 N – 32 N) for the posterior, posterolateral and anterior compartment, respectively. The median α was - 29° (- 55° – 5°), - 23° (- 56° – -1°) and 4° (- 22° – -18°) for the posterior, posterolateral and anterior compartment, respectively. The median β was - 71° (- 80° – -65°), - 76° (- 86° – -69°) and - 75° (- 81° – -71°) for the posterior, posterolateral and anterior compartment, respectively.ConclusionExpert data on force magnitude and force direction exerted on the elbow during arthroscopic navigation in cadaveric specimens were collected. The proposed maximum allowable force of 30 N (smallest 90th percentile of Fabs) exerted on the elbow tissue, and the 10th–90th percentile range of the force directions (α and β) for each compartment may be used to provide objective feedback during arthroscopic skills training.

Highlights

  • Elbow arthroscopy is a difficult surgical technique

  • The purpose of this study was to determine the force magnitude and force direction used by experts during arthroscopic elbow navigation in cadaveric specimens and assess their applicability in elbow arthroscopy training

  • This study shows that median loads of 24-29 N are exerted on the elbow by experts during arthroscopic navigation in a cadaveric elbow

Read more

Summary

Introduction

Elbow arthroscopy is a difficult surgical technique. Objective metrics can be used to improve safe and effective training in elbow arthroscopy. Over the past decades elbow arthroscopy has become a surgical tool due to better understanding of the neurovascular anatomy, technical advancements, and broadening range of indications (Hilgersom et al, 2018; Yeoh et al, 2012). An increase in elbow arthroscopy use is expected to raise the number of complications, which emphasizes the importance of training in portal placement and arthroscopic skills to deliver safe surgical care (Rose & Pedowitz, 2015). Arthroscopy requires excellent visual spatial awareness to mentally recreate a 3-dimenionsal environment from 2-dimensional images. This cannot be learned by assisting and observing in the operating theatre alone (Aggarwal et al, 2004; Aim et al, 2016; Rosenthal et al, 2006; Tashiro et al, 2009). Further distinguishing elbow arthroscopy is the need for mirrored hand-eye coordination in the lateral decubitus position when compared to most other arthroscopic modalities; and overhand versus

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call