Abstract

PurposeCollaborative robots (cobots) are widely used in various manipulation tasks within complex industrial environments. However, the manipulation capabilities of cobot manipulation planning are reduced by task, environment and joint physical constraints, especially in terms of force performance. Existing motion planning methods need to be more effective in addressing these issues. To overcome these challenges, the authors propose a novel method named force manipulability-oriented manipulation planning (FMMP) for cobots.Design/methodology/approachThis method integrates force manipulability into a bidirectional sampling algorithm, thus planning a series of paths with high force manipulability while satisfying constraints. In this paper, the authors use the geometric properties of the force manipulability ellipsoid (FME) to determine appropriate manipulation configurations. First, the authors match the principal axes of FME with the task constraints at the robot’s end effector to determine manipulation poses, ensuring enhanced force generation in the desired direction. Next, the authors use the volume of FME as the cost function for the sampling algorithm, increasing force manipulability and avoiding kinematic singularities.FindingsThrough experimental comparisons with existing algorithms, the authors validate the effectiveness and superiority of the proposed method. The results demonstrate that the FMMP significantly improves the force performance of cobots under task, environmental and joint physical constraints.Originality/valueTo improve the force performance of manipulation planning, the FMMP introduces the FME into sampling-based path planning and comprehensively considers task, environment and joint physical constraints. The proposed method performs satisfactorily in experiments, including assembly and in situ measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.