Abstract

Iron ore pellets consist of variety of mineral particles and are an important refined product used in steel manufacturing. Production of high-quality pellets requires good understanding of interactions between different constituents, such as magnetite, gangue residues, bentonite, and additives. Much research has been reported on magnetite, silica, and bentonite surface properties and their effect on pellet strength but more scant with a focus on a fundamental particle–particle interaction. To probe such particle interaction, atomic force microscopy (AFM) using colloidal probe technique has proven to be a suitable tool. In this work, the measurements were performed between magnetite–magnetite, bentonite–magnetite, silica–bentonite, and silica–magnetite particles in 1 mM CaCl2 solution at various pH values. The interaction character, i.e., repulsion or attraction, was determined by measuring and analyzing AFM force curves. The observed quantitative changes in interaction forces were in good agreement with the measured zeta-potentials for the particles at the same experimental conditions. Particle aggregation was studied by measuring the adhesion force. Absolute values of adhesion forces for different systems could not be compared due to the difference in particle size and contact geometry. Therefore, the relative change of adhesion force between pH 6 and 10 was used for comparison. The adhesion force decreased for the magnetite–magnetite and bentonite–silica systems and slightly increased for the magnetite–bentonite system at pH 10 as compared to pH 6, whereas a pronounced decrease in adhesion force was observed in the magnetite–silica system. Thus, the presence of silica particles on the magnetite surface could have a negative impact on the interaction between magnetite and bentonite in balling due to the reduction of the adhesion force.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.