Abstract

Several dynamic projects and fault diagnosis of mechanical structures require the knowledge of the acting external forces. However, the measurement of such forces is often difficult or even impossible; in such cases, an inverse problem must be solved. This paper proposes a force identification method that uses the response surface methodology (RSM) based on central composite design (CCD) in conjunction with a random forest regression algorithm. The procedure initially required the finite element modal model of the forced structure. Harmonic analyses were then performed with varied parameters of forces, and RSM generated a dataset containing the values of amplitude, frequency, location of forces, and vibration acceleration at several points of the structure. The dataset was used for training and testing a random forest regression model for the prediction of any location, amplitude, and frequency of the force to be identified with information on only the vibration acquisition at certain points of the structure. Numerical results showed excellent accuracy in identifying the force applied to the structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.