Abstract

The outer hair cell of the mammalian cochlea has a unique motility directly dependent on the membrane potential. Examination of the force generated by the cell is an important step in clarifying the detailed mechanism as well as the biological importance of this motility. We performed a series of experiments to measure force in which an elastic probe was attached to the cell near the cuticular plate and the cell was driven with voltage pulses delivered from a patch pipette under whole-cell voltage clamp. The axial stiffness was also determined with the same cell by stretching it with the patch pipette. The isometric force generated by the cell is around 0.1 nN/mV, somewhat smaller than 0.15 nN/mV, predicted by an area motor model based on mechanical isotropy, but larger than in earlier reports in which the membrane potential was not controlled. The axial stiffness obtained, however, was, on average, 510 nN per unit strain, about half of the value expected from the mechanical isotropy of the membrane. We extended the area motor theory incorporating mechanical orthotropy to accommodate the axial stiffness determined. The force expected from the orthotropic model was within experimental uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.