Abstract

Molecular motors such as dynein are known to move by taking steps of different sizes, depending on the load. Here, we develop a simple, discrete, minimal ratchet model for a motor that can take steps of sizes δ∘ and 2δ∘ in order to provide a bare-bones description of dynein. We obtain the force–velocity curves and diffusivity for this motor for different concentrations of ATP. We also study the mechano-chemical energy transduction and thermodynamic efficiency of the motor. Further, by investigating the statistics of step sizes for the motor, we show that the average step size and fluctuation in step sizes have a non-monotonic force dependence. We develop closed-form analytical expressions for all our results, which despite the simplicity of the model give a reasonable match with the known experiments and simulations on dynein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.