Abstract

The chapter focuses on a general description of the force fields that are most commonly used at present, and it gives an indication of the directions of current research that may yield better functions in the near future. After a brief survey of current models, mostly generated during the 1990s, the focus of the chapter is on the general directions the field is taking in developing new models. The most commonly used protein force fields incorporate a relatively simple potential energy function: The emphasis is on the use of continuum methods to model the electrostatic effects of hydration and the introduction of polarizability to model the electronic response to changes in the environment. Some of the history and performance of widely used protein force fields based on an equation on simplest potential energy function or closely related equations are reviewed. The chapter outlines some promising developments that go beyond this, primarily by altering the way electrostatic interactions are treated. The use of atomic multipoles and off-center charge distributions, as well as attempts to incorporate electronic polarizability, are also discussed in the chapter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call