Abstract

We investigate the performance of different force-fields for alkanes, united (TraPPE) and all atom (OPLS-AA) models, and water (SPC/E and TIP4P-2005), in the prediction of the interfacial structure of alkane (n-octane, and n-dodecane)–water interfaces. We report an extensive comparison of the interfacial thermodynamic properties as well as the interfacial structure (translational and orientational). We use the recently introduced intrinsic sampling method, which removes the averaging effect of the interfacial capillary waves and provides a clear view of the interface structure. The alkane interfacial structure is sensitive to the environment, i.e. alkane–vapour or alkane–water interfaces, showing a stronger structure when it is in contact with the water phase. We find that this structure is fairly independent of the level of detail, full or united atom, employed to describe the alkane phase. The water surface properties show a small dependence on the water model. The dipole moment of the SPC/E model shows asymmetric fluctuations, with a tendency to point both towards the alkane and water phases. On the other hand the dipole moment of the TIP4P-2005 model shows a tendency to point towards the water phase only. Analysis of the intrinsic electrostatic field indicates that the surface water potential is confined to an interfacial region of about 8 Å. Overall we find that the intrinsic structure of alkane–water interfaces is a robust interfacial property, which is independent of the details of the force-field employed. Hence, it should provide a good reference to interpret experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.