Abstract

The complex structures of tissues determine their mechanical strength. In engineered tissues formed through self-assembly in a mold, artificially imposed boundary constraints have been found to induce anisotropic clustering of the cells and the extracellular matrix in local regions. To understand how such tissue remodeling at the intermediate length-scale (mesoscale) affects tissue stiffening, we used a novel microtissue mechanical testing system to manipulate the remodeling of the tissue structures and to measure the subsequent changes in tissue stiffness. Microtissues were formed through cell driven self-assembly of collagen matrix in arrays of micro-patterned wells, each containing two flexible micropillars that measured the microtissues' contractile forces and elastic moduli via magnetic actuation. We manipulated tissue remodeling by inducing myofibroblast differentiation with TGF-β1, by varying the micropillar spring constants or by blocking cell contractility with blebbistatin and collagen cross-linking with BAPN. We showed that increased anisotropic compaction of the collagen matrix, caused by increased micropillar spring constant or elevated cell contraction force, contributed to tissue stiffening. Conversely, collagen matrix and tissue stiffness were not affected by inhibition of cell-generated contraction forces. Together, these measurements showed that mesoscale tissue remodeling is an important middle step linking tissue compaction forces and tissue stiffening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.