Abstract

The Maxwell stress tensor for the field inside a spoof surface plasmon polariton (SSPP) waveguide and the electromagnetic force distribution acting on a dielectric particle are investigated. We show that, for particles made of material with the dielectric function slightly different from that of the medium filling the waveguide, the force distribution is fully described by the SSPP field in the absence of the particle. The spatial profile of the field strongly depends on the relation between the operating frequency and the SSPP resonance frequency. We show that varying the characteristic frequencies introduces a switching effect, when the direction of the force along the waveguide axis changes (from toward the grooves to away from them). We propose a pumping mechanism based on force acting on a small particle inside the SSPP waveguide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.