Abstract

This article presents an effective design of omnidirectional four-mecanum-wheeled vehicles to transport an object and track a predefined trajectory cooperatively. Furthermore, a novel design of the rotary platform is presented for multiple unmanned ground vehicles (m-UGVs) to load objects and provide better maneuverability in confined spaces during cooperative transportation. The number of unmanned ground vehicles (UGVs) is adjustable according to the object's weight and size in the proposed framework because transportation is accomplished without physical grippers. Moreover, to minimize the complexity in dealing with the interactive force between the object and UGVs, no force/torque sensor is used in the design of the control algorithm. Instead, an adaptive sliding-mode controller is formulated to cope with the dynamic uncertainties and smoothly transport an object along a desired trajectory. Thus, three external force analyses-gradient projection method, adaptive force estimation, and radial basis function neural network force estimation-are proposed for m-UGVs. In addition, the stability and the performance tracking of the m-UGV system in the presence of dynamic uncertainties using the proposed force estimation are investigated by employing the Lyapunov theory. Finally, experiments on cooperative transportation are presented to demonstrate the efficiency and efficacy of the m-UGV system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.