Abstract

Network visualization, in mathematics often referred to as graph visualization, has evolved significantly over time, offering various methods to effectively represent complex data structures. New methods and devices advance the possibilities of visualization both from the point of view of the quality of displayed information and of the possibilities of visualizing a larger amount of data. Immersive visualization includes the user directly in presented visual representation but requires a native 3D environment for direct interaction with visualized information. This article describes an approach to creating a force-directed immersive 3D network visualization algorithm available for application in immersive environments, such as a cave automatic virtual environment or virtual reality. The algorithm aims to address the challenge of creating visually appealing and easily interpretable visualizations by utilizing 3D space and the Unity engine. The results show successfully visualized data and developed interactive visualization methods, overcoming limitations of basic force-directed implementations. The main contribution of the presented research is the force-directed algorithm with springs and controlled placement as an immersive visualization technique that combines the use of springs and attractive forces to stabilize a network in a 3D environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call