Abstract

This paper discusses two of the mechanisms that limit the attainable force density in slotted low-speed permanent-magnet (PM) electric machines. Most of the interest is focused on the force density limits imposed by heating of the windings and by stator reactance. The study is based on analytical models for the force and reactance calculations and a lumped parameter thermal model. It is found that in a machine with an indirectly cooled stator, it is difficult to achieve a force density greater than 100 kN/m/sup 2/ due to temperature limits. A high force density is achieved by using deep slots, which lead to high reactance. The high reactance severely increases the converter kilovolt-ampere requirement and total system cost. It is also shown that the cost caused by the high reactance will also limit the force density reached. In machines with one slot per pole per phase, the reactance limited the useful slot depth to approximately 200 mm. However, in machines having a greater number of slots per pole per phase the reactance becomes no longer an important limiting factor for the slot depth and force density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.