Abstract

This article presents a distributed, efficient, scalable, and real-time motion planning algorithm for a large group of agents moving in 2-D or 3-D spaces. This algorithm enables autonomous agents to generate individual trajectories independently with only the relative position information of neighboring agents. Each agent applies a force-based control that contains two main terms: 1) collision avoidance and 2) navigational feedback. The first term keeps two agents separate with a certain distance, while the second term attracts each agent toward its goal location. Compared with existing collision-avoidance algorithms, the proposed force-based motion planning (FMP) algorithm can find collision-free motions with lower transition time, free from velocity state information of neighboring agents. It leads to less computational overhead. The performance of proposed FMP is examined over several dense and complex 2-D and 3-D benchmark simulation scenarios, with results outperforming existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.